Laplacian Energy of a Fuzzy Graph
نویسندگان
چکیده مقاله:
A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. Let G be a fuzzy graph with n vertices and m edges. The Laplacian spectrum of fuzzy graph G is defined. The Laplacian energy of G has been recently defined . Section 2 consists of preliminaries and definition of Laplacian energy of a fuzzy graph and in Section 3, we present some results on Laplacian energy of a fuzzy graph. Some bounds o Laplacian energy of fuzzy graphs are also given.
منابع مشابه
laplacian energy of a fuzzy graph
a concept related to the spectrum of a graph is that of energy. the energy e(g) of a graph g is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of g . the laplacian energy of a graph g is equal to the sum of distances of the laplacian eigenvalues of g and the average degree d(g) of g. in this paper we introduce the concept of laplacian energy of fuzzy graphs. ...
متن کاملLaplacian Sum-Eccentricity Energy of a Graph
We introduce the Laplacian sum-eccentricity matrix LS_e} of a graph G, and its Laplacian sum-eccentricity energy LS_eE=sum_{i=1}^n |eta_i|, where eta_i=zeta_i-frac{2m}{n} and where zeta_1,zeta_2,ldots,zeta_n are the eigenvalues of LS_e}. Upper bounds for LS_eE are obtained. A graph is said to be twinenergetic if sum_{i=1}^n |eta_i|=sum_{i=1}^n |zeta_i|. Conditions ...
متن کاملOn Eccentricity Version of Laplacian Energy of a Graph
The energy of a graph G is equal to the sum of absolute values of the eigenvalues of the adjacency matrix of G, whereas the Laplacian energy of a graph G is equal to the sum of the absolute value of the difference between the eigenvalues of the Laplacian matrix of G and the average degree of the vertices of G. Motivated by the work from Sharafdini an...
متن کاملLaplacian energy of a graph
Let G be a graph with n vertices and m edges. Let λ1, λ2, . . . , λn be the eigenvalues of the adjacency matrix of G, and let μ1, μ2, . . . , μn be the eigenvalues of the Laplacian matrix of G. An earlier much studied quantity E(G) = ∑ni=1 |λi | is the energy of the graph G. We now define and investigate the Laplacian energy as LE(G) = ∑ni=1 |μi − 2m/n|. There is a great deal of analogy between...
متن کاملOn eccentricity version of Laplacian energy of a graph
The energy of a graph G is equal to the sum of absolute values of the eigenvalues of the adjacency matrix of G, whereas the Laplacian energy of a graph G is equal to the sum of the absolute value of the difference between the eigenvalues of the Laplacian matrix of G and average degree of the vertices of G. Motivated by the work from Sharafdini et al. [R. Sharafdini, H. Panahbar, Vertex weighted...
متن کاملEnergy of a Complex Fuzzy Graph
In this paper, the concept of fuzzy graph is extended to a complex fuzzy graph. Complex fuzzy graphs are encountered in complex fuzzy set theory. The novelty of the complex fuzzy set lies in the range of values its membership function may attain. In contrast to a traditional fuzzy membership function, this range is not limited to [0, 1], but extended to the unit circle in the complex plane. Thu...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 1
صفحات 1- 10
تاریخ انتشار 2014-03-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023